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DEPENDENCE OF THE E-CLOUD INSTABILITY
THRESHOLD ON ENERGY

G. Rumolo, in PAF Meeting (14/08/2006)
* Thanks to E. Shaposhnikova, E. Métral and F. Zimmermann
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HEADTAIL SIMULATIONS
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e CONCLUSIONS
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BACKGROUND AND CONTEXT OF THE STUDY

—> Main question:

If the PS gets upgraded to the PS2, how does the
electron cloud instability behave because of the
higher injection energy into the SPS?

—> E. Shaposhnikova already showed (PAF, 17 October 2005) a list of
potential advantages of having higher injection energy:

—> Smaller space charge tune spread and IBS growth times
=> Threshold increase for the H coupled-bunch instability

= Smaller physical transverse emittance - less injection losses
=> Shorter acceleration time
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BACKGROUND AND CONTEXT (II)

The effects of a higher
Injection energy in the SPS

E. Shaposhnikova, AB/RF

PAF, 17 October 2005

Summary (2/2)

No obvious effect on the known " bottle-necks”:

— > | e Vertical e-cloud instability I

e Longitudinal coupled-bunch instabilities

e Beam loading

Points to check

—> e Vertical e-cloud instability (measurements and simulations)

e TMCI threshold with effect of space charge included (simulations)

PAF, 14.08.2006 Giovanni Rumolo 3/19



R&D and LHC Collective Effects Section

BACKGROUND AND CONTEXT (III)

—> The effect on the TMCI threshold has been studied

.Simulation Study on the Energy Dependence of the TMCI Threshold in the
CERN-SPS*, G. Rumolo, E. Métral, E. Shaposhnikova, EPAC‘06, Edinburgh
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BACKGROUND AND CONTEXT (IV)

— In the same paper we tried to understand the behaviour of the electron
cloud instability by a broad-band TMCI model [E. Métral, F. Zimmermann]
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— Preliminary HEADTAIL simulations showed stronger instability at 60
GeV/c than at 26 GeV/c = Detailed threshold study needed!
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MAIN ASSUMPTIONS FOR THIS ANALYSIS

e Nominal (LHC) beam parameters at injection:
— Longitudinal emittance ¢ = 0.35 eVs - unchanged
— Bunch length 0.=0.3 m

— Normalised transverse emittances: ~¢, =3.0 um
 Beam energy swept over a large range (14-270 GeV/c)
* Bunches are always matched to their buckets

e Considered electron cloud density is 10> m (average
value) and 1s concentrated in the MBB dipoles

e Simulations done in dipole field regions
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MAIN ASSUMPTIONS FOR THIS ANALYSsSIS (II)

- FULL OVERVIEW ON THE PARAMETERS -

Table 1: SPS parameters used in the simulation

Parameter Symbol (unit) Value
Momentum po (GeVic) scanned between 14 and 270
Bunch intensity Ny( % 10') | scanned between 0.3 and 1.1
Longitudinal emittance (2a) £ (eVs) 0.35

Bunch length (1-7) . (m) 0.3

Mom. compaction v 1.92 x 1073

Norm. r.m.s. emittances €xy (pm) 2.8/2.8

Tunes Dy 26.185/26.13
Chromaticities Ery corrected, corrected
E-cloud density (average) pe (M) 0.3—1 x 10"
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MAIN IMPLICATIONS OF THE ASSUMPTIONS

e Longitudinal emittance 0.35 eVs and rms bunch length 0.3 m:

*  Matched voltage scales like Inl/y and is re-adjusted for the simulations at
different energies

25 | |

2 |-

1.5

V (MV)

1 F

> VA\\\\‘
0 1 1 1 1 L

0 50 100 150 200 250 300
pp (GeV/c)

* Normalised transverse emittances: ~3.0 um implies that
transverse beam sizes scale like y -1
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CENTROID AND EMITTANCE EVOLUTION
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Example at 40 GeV/c:
— There is a coherent motion of the bunch with threshold between 5 and 7 x 1010
— simulations are in dipole field regions, the instability appears in the vertical plane.
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CENTROID MOTION ALONG THE BUNCH
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The coherent motion appears along the bunch with a typical TMCI pattern.

Example ~ The figures above are superimposed snapshots of the centroid motion along the bunch
at different times for the 60 and 200 GeV/c cases.
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OVERVIEW ON THE INSTABILITY THRESHOLDS

SPS MBB dipoles, p,=10'2 m™®

HEADTAIL simulations’
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* Bunch intensity when the e-cloud density is fixed — decreases with energy!
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* E-cloud density when the bunch intensity is fixed — it does not change by a large amount
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CHANGING ASSUMPTIONS: V=4 MV

Ny=1.1x 10", py=40 GeVic Ny=1.1x 10", py=120 GeV/c
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Stronger voltage makes the beam more stable:

— At 40 GeV/c 1.1 x 10 ppb is less unstable than in matched condition and it is completely
stabilized by a 0.4 units of vertical chromaticity.

— At 120 GeV/c 1.1 x 10!! ppb is stable even with zero chromaticity.
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HEADTAIL UPGRADED

The electron distribution used in HEADTAIL has been so far a uniform distribution in the beam
pipe or a single- or two-stripe distribution to better fit the real distribution in a dipole field region.

— We could improve the model by using as an input the real distribution of electrons as it comes
out of the build up ECLOUD code

— The electron distribution at the very beginning of a bunch passage is saved into a file from an
ECLOUD run and subsequently fed into HEADTAIL. This model is more self-consistent!
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HEADTAIL UPGRADED (II)

— The build up simulations show a very weak dependence of the saturated electron density on the
beam energy (i.e. transverse beam sizes).

— Changing 0,,, from 1.4 to 1.8 the value of saturated density about doubles.
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HEADTAIL UPGRADED (II1)

— The dependence of the saturated electron density on the beam intensity is plotted for two values
of the 6,

— When 6, , =1.4 the threshold for the e-cloud build up is at around 4 x 10'°,
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HEADTAIL UPGRADED (IV)
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— The instability occurs in a very similar fashion to the case with electrons uniformly distributed
inside the beam pipe. The threshold is very close to the one previously computed!!
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HEADTAIL UPGRADED (V)
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Example at 50 GeV/c with two different values of J,,,.:
— ¢, . =1.4, the instability threshold is at around 7 x 10'°
— ¢, . =1.8, the instability threshold is at around 5 x 10'°
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SUMMARY & CONCLUSIONS

e The electron cloud instability exhibits a more complex
behaviour than regular TMCI:

— The bunch intensity threshold (N,) for instability decreases
with energy, most probably due to the shrinking transverse
beam sizes

— Unlike the conventional TMCI threshold, which increases with
energy like Inl, the decay law for the e-cloud instability
threshold seems to be o 1/y.

e The e-cloud density threshold (p,;) for instability

weakly depends on energy, but anyway is minimum at
around 40-60 GeV/c
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CONCLUSIONS & RECOMMENDATIONS

e Self-consistent ECLOUD-HEADTAIL simulations have
been set up for a more realistic modeling:
— N, and p, are not independent variables, but p,=p_,(N,)
— The electron distribution used in HEADTAIL comes from the
build up simulation.
 The self-consistent model confirms the results obtained
with the uniform cloud model at 40-50 GeV/c

e Based on this study, measures against electron cloud
formation are necessary if the injection energy into
the SPS is increased.
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