The effects of a higher injection energy in the SPS

E. Shaposhnikova, AB/RF

PAF, 17 October 2005

Acknowledgments: G. Arduini, R. Garoby, T. Linnecar, G. Rumolo, F. Zimmermann, J. Wenninger

Present status of the LHC beam in the SPS

Nominal LHC beam parameters at 450 GeV:

$$N_b=1.15 imes 10^{11}$$
 ppb, $arepsilon \leq 0.7$ eVs, $arepsilon_n \leq 3.5~\mu$ m

- LHC beam parameters at 450 GeV measured in 2004
- 4 batches with 25 ns spaced bunches, $N_b=1.15 imes10^{11}$ ppb \surd
- longitudinal emittance of $\varepsilon=0.6\pm0.1$ eVs, $au=1.6\pm0.1$ ns extstyle (T.~Bohl~et~al.,~2004)
- transverse normalised emittances (G. Arduini et al., APC 13.08.2004):

$$arepsilon_H = 2.99 \pm 0.26~\mu$$
m - \surd

$$arepsilon_V = 3.61 \pm 0.26~\mu$$
m

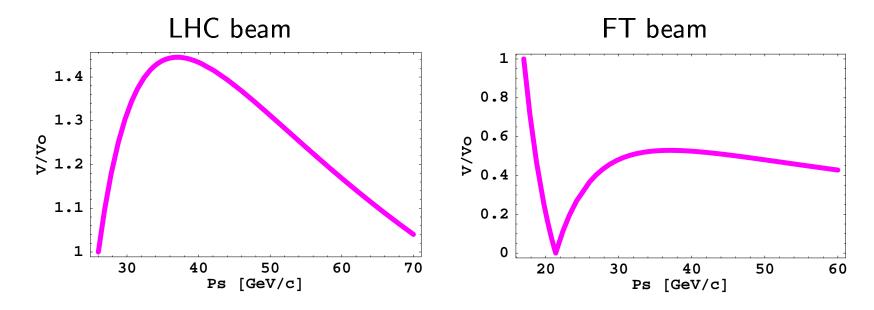
Known intensity limitations in the SPS

Single bunch intensity

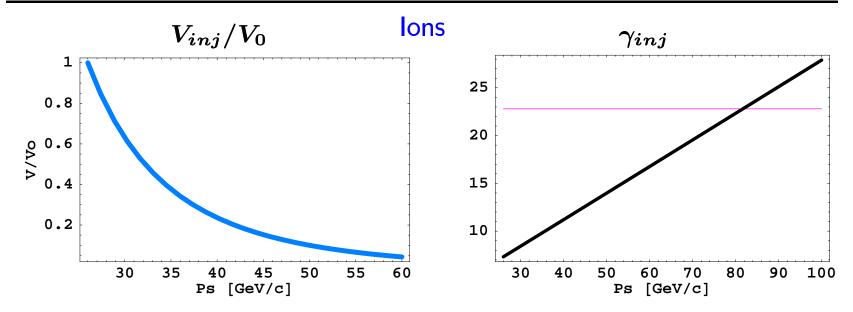
- space charge
- TMCI (transverse mode coupling instability)

Multi-bunch effects (total intensity)

- e-cloud
- capture loss
- coupled bunch instabilities at injection and high energy
- beam loading in the 200 MHz and 800 MHz RF systems


Higher injection energy

How higher injection energy would affect these intensity limitations?


Main assumptions for analysis:

- Nominal (LHC) beam parameters at injection:
 - longitudinal emittance 0.35 eVs unchanged
 - normalised transverse emittances: 2.8 μ m unchanged
- Injection at 40 GeV/c and 60 GeV/c, magnetic cycle is similar to the present one (total time of acceleration, front porch)
- SPS is unchanged (impedance, RF systems)

Protons: matched voltage at injection V_{inj}/V_0

- ⇒ Matched voltage at injection goes in right direction in both cases
 (it is too low for LHC beam 600 kV)
- ⇒ Hopefully no transition crossing for fixed target beam

- ⇒ Voltage requirements at injection could be relaxed
- \Rightarrow Smaller frequency sweep: no fixed frequency acceleration > 40 GeV/c with present RF system and easier requirements for a new RF system with 12.5 ns bunch spacing for protons
- ullet Injection into the SPS above transition only for $P_s>82$ GeV/c (proton equivalent in the PS for Pb_{208}^{54+})

Single bunch limitations: space charge and IBS

- ullet ppbar limit for space-charge tune spread: $\Delta Q_{sc} < 0.07$
- LHC beam:
 - nominal intensity $\Delta Q_{sc} = 0.05$
 - ultimate intensity $\Delta Q_{sc} = 0.07$
- LHC ions:
 - nominal intensity without bunchlets $\Delta Q_{sc} = 0.08$
 - 25% beam loss, injection plateau 43 s, IBS growth time ~ 300 s
- ullet Recent measurements in the SPS: beam loss $(1.2
 ightarrow 0.8) imes 10^{11}$ for $\Delta Q_V = 0.3$, lifetime 50 s for $\Delta Q_{H,V} = 0.14, 0.24$ (H. Burkhardt et al., EPAC'04).
- \Rightarrow Significant improvement ($\propto 1/\gamma^2$), especially for ions
- no 100 MHz RF system, ...

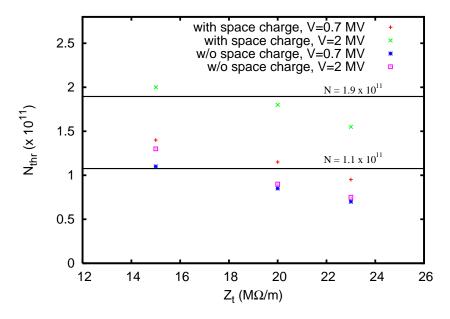
Single bunch limitations: TMCI

TMCI: Transverse Mode Coupling Instability

- ullet With impedance model obtained as a best fit to measurements, for the LHC bunch at 26 GeV/c in 2006 $N_{th} \sim 1.4 \times 10^{11}$ (G. Rumolo et al)
- Cure by high chromaticity and high voltage (slow beam loss?)
- Threshold intensity scales as

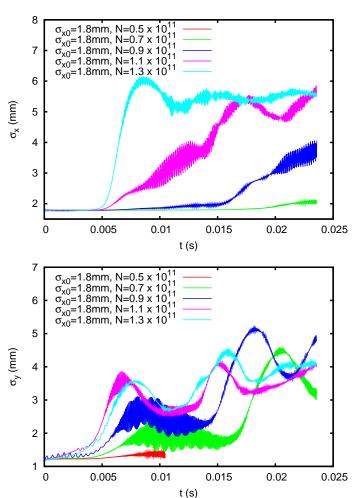
$$N_{th} \propto \gamma \omega_{s0} au^2$$

where for matched voltage the synchrotron frequency ω_{s0}


$$\omega_{s0} \propto \sqrt{rac{\eta V_{inj}}{\gamma}} \propto V_{inj}$$

⇒ Threshold increase by factor 3-4 for matched voltage.

Single bunch limitations: TMCI + space charge


TMCI thresholds

for LHC bunch at 26 GeV/c, $\xi = 0$ (G. Rumolo et al., HEADTAIL, 2005)

TMCI threshold at 60 GeV/c without space charge? \rightarrow simulations

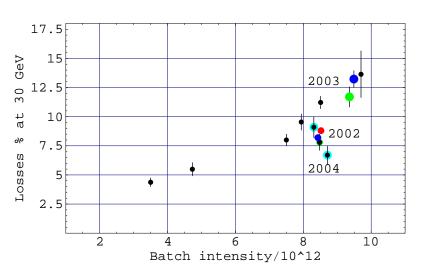
Emittance blow-up for $N < N_{th}$

Electron cloud (1/2)

- Leads to transverse emittance blow-up and instabilities:
- coupled bunch in H-plane (a few MHz)
- single bunch in V-plane in the batch tail (~ 700 MHz)
- Cures:
- scrubbing run,
- high chromaticity in V-plane,
- transverse damper in H-plane
- Emittance blow-up for 4 LHC batches in V-plane $\sim 20\%$ at the end of the batch (*G. Arduini, Chamonix 2004*)

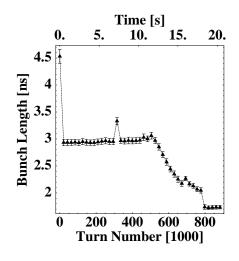
Electron cloud (2/2)

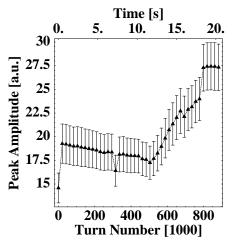
ullet Coupled-bunch instability in H-plane at different energies. Measurements with ${\bf 1.1} \times {\bf 10^{11}}$ ppb (*G. Arduini et al.*)


Momentum [GeV/c]	Growth time [turns]
26	300-400
55	800-900
450	6000

\Rightarrow Instability growth rate $\sim 1/\gamma$

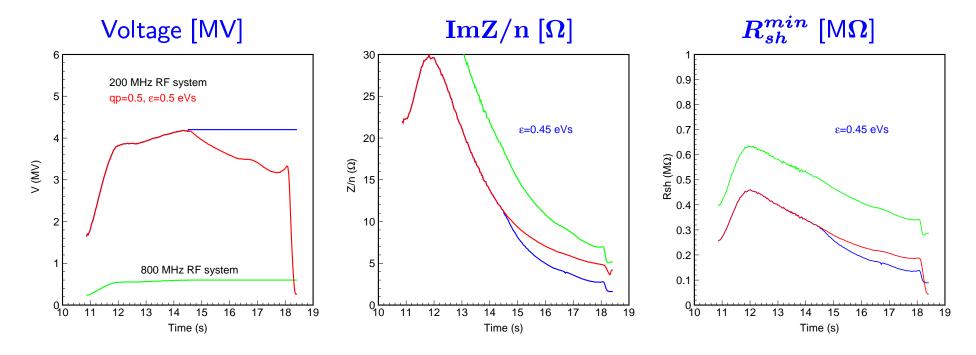
• Probably no significant changes for instability in V-plane (F. Zimmermann) - to be checked in simulations


Capture loss


Relative capture loss for different batch intensities

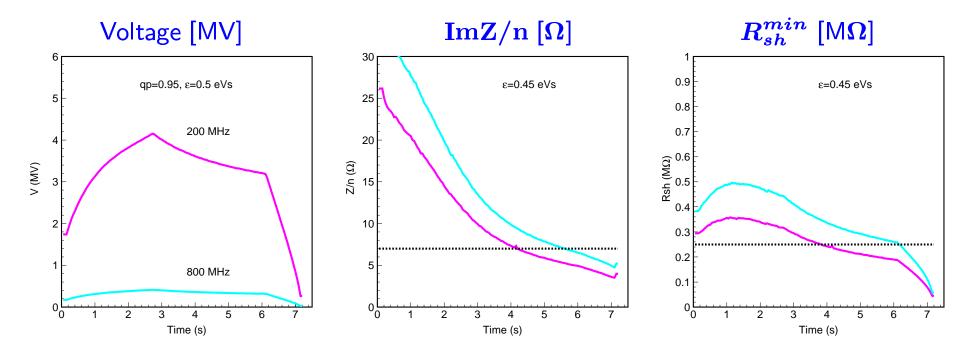
- Strong dependence on batch intensity, much less on total (number of batches) or bunch intensity
- Reduction of relative loss for 75 ns bunch spacing
- Reduction of losses to 5.5 ± 0.5% at the end of 2004 due to new working point (26.19,26.13) → (26.13,26.19) and RF gymnastics
- ⇒ Loss mechanism is not clear (should be better if space charge or e-cloud are involved)
- \Rightarrow Smaller beam size $(\propto 1/\gamma_{inj})$ should help for injection loss

Longitudinal coupled-bunch instabilities (1/3)



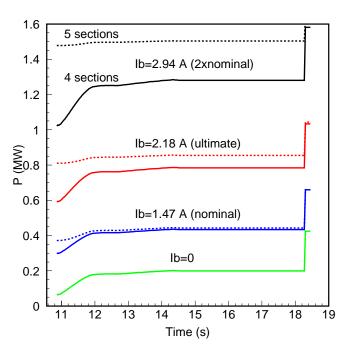
- ullet Threshold: single batch with $2 imes 10^{10}$ ppb is unstable at ~ 280 GeV
- Source: fundamental and HOMs of 200 MHz RF system (629, 912 MHz...)
- Cures:
 - the 800 MHz RF system in bunchshortening mode through the cycle
 - controlled emittance blow-up by (1) mismatched voltage at injection: $\varepsilon_{2\sigma} = 0.35 \text{ eVs} \rightarrow 0.45 \text{ eVs}$
 - (2) beam excitation at 200 GeV with bandlimited noise: \rightarrow 0.6 eVs

Longitudinal coupled-bunch instabilities (2/3)


Threshold impedances for injection at $\frac{26 \text{ GeV}}{\text{c}}$ for nominal intensity

- ullet Controlled emittance blow-up to 0.73 eVs for ultimate beam stability on the flat top ullet capture RF system in the LHC
- ullet Instability at injection observed at $\sim 1.3 imes 10^{11}$ (with 800 MHz off)

Longitudinal coupled-bunch instabilities (3/3)


Threshold impedances for injection at 60 GeV/c for nominal intensity

- \Rightarrow Thresholds are practically indifferent to injection energy changes ($\sim 20\%$)
- → larger emittance at injection needed (PS)

Beam loading

RF power for different beam currents (from 26 GeV/c)

Maximum available RF power in one TW cavity (in the pulsed mode)

- 200 MHz (limited by coaxial line and coupler-cavity connection):
- 700 kW for full SPS ring
- 1.4 MW for 1/2 ring not tested, planned for the end of 2006
- 800 MHz:

210 kW in one cavity and 150 kW in the second (after upgrade)

⇒ RF power requirement is mainly determined by the cycle

Summary (1/2)

Advantages of the increased injection energy in the SPS:

- No transition crossing for proton beams and probably light ions
- Easier acceleration of lead ions
- Smaller space change tune spread and IBS growth time (critical for nominal ions and ultimate protons, probably also for capture loss)
- Threshold increase in H-plane of coupled-bunch instabilities due to e-cloud
- TMCI threshold increase without effect of space charge
- Smaller physical transverse emittance less injection losses
- Shorter acceleration time (10%)

• ...

Summary (2/2)

No obvious effect on the known "bottle-necks":

- Vertical e-cloud instability
- Longitudinal coupled-bunch instabilities
- Beam loading

Points to check

- Vertical e-cloud instability (measurements and simulations)
- TMCI threshold with effect of space charge included (simulations)

In general it should be a much easier machine to operate!