

DEPENDENCE OF THE E-CLOUD INSTABILITY THRESHOLD ON ENERGY

*G. Rumolo, in PAF Meeting (14/08/2006) * Thanks to E. Shaposhnikova, E. Métral and F. Zimmermann*

- INTRODUCTION
 - BACKGROUND & CONTEXT
 - SPS PARAMETERS
- STUDY OF E-CLOUD THRESHOLD IN THE SPS WITH HEADTAIL SIMULATIONS
- TOWARD A SELF-CONSISTENT ECLOUD-HEADTAIL MODEL
- CONCLUSIONS

BACKGROUND AND CONTEXT OF THE STUDY

 \rightarrow Main question:

If the PS gets upgraded to the PS2, how does the electron cloud instability behave because of the higher injection energy into the SPS?

 \rightarrow E. Shaposhnikova already showed (*PAF*, 17 October 2005) a list of potential advantages of having higher injection energy:

 \Rightarrow Smaller space charge tune spread and IBS growth times

- \Rightarrow Threshold increase for the H coupled-bunch instability
- \Rightarrow Smaller physical transverse emittance less injection losses
- \Rightarrow Shorter acceleration time

⇒...

BACKGROUND AND CONTEXT (II)

The effects of a higher injection energy in the SPS

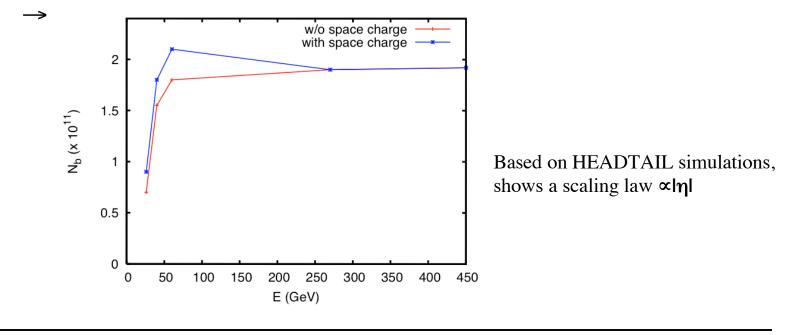
E. Shaposhnikova, AB/RF

Summary (2/2)

No obvious effect on the known "bottle-necks":

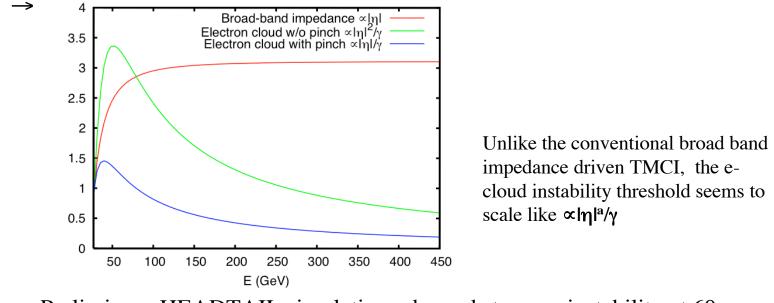
- Vertical e-cloud instability
 - Longitudinal coupled-bunch instabilities
 - Beam loading

Points to check


- Vertical e-cloud instability (measurements and simulations)
 - TMCI threshold with effect of space charge included (simulations)

BACKGROUND AND CONTEXT (III)

→ The effect on the TMCI threshold has been studied


"Simulation Study on the Energy Dependence of the TMCI Threshold in the CERN-SPS", G. Rumolo, E. Métral, E. Shaposhnikova, EPAC'06, Edinburgh

BACKGROUND AND CONTEXT (IV)

 \rightarrow In the same paper we tried to understand the behaviour of the electron cloud instability by a broad-band TMCI model [E. Métral, F. Zimmermann]

 \rightarrow Preliminary HEADTAIL simulations showed stronger instability at 60 GeV/c than at 26 GeV/c \Rightarrow **Detailed threshold study needed!**

MAIN ASSUMPTIONS FOR THIS ANALYSIS

- Nominal (LHC) beam parameters at injection:
 - Longitudinal emittance $\varepsilon_z = 0.35 \text{ eVs}$ unchanged
 - Bunch length $\sigma_z = 0.3$ m
 - Normalised transverse emittances: $\sim \varepsilon_{x,y} = 3.0 \ \mu m$
- Beam energy swept over a large range (14-270 GeV/c)
- Bunches are always matched to their buckets
- Considered electron cloud density is 10¹² m⁻³ (average value) and is concentrated in the MBB dipoles
- Simulations done in dipole field regions

MAIN ASSUMPTIONS FOR THIS ANALYSIS (II) - FULL OVERVIEW ON THE PARAMETERS -

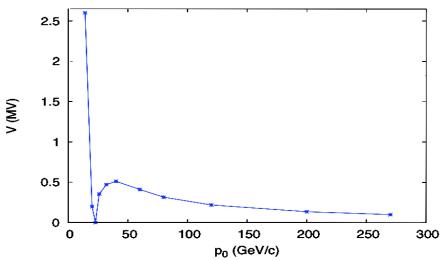
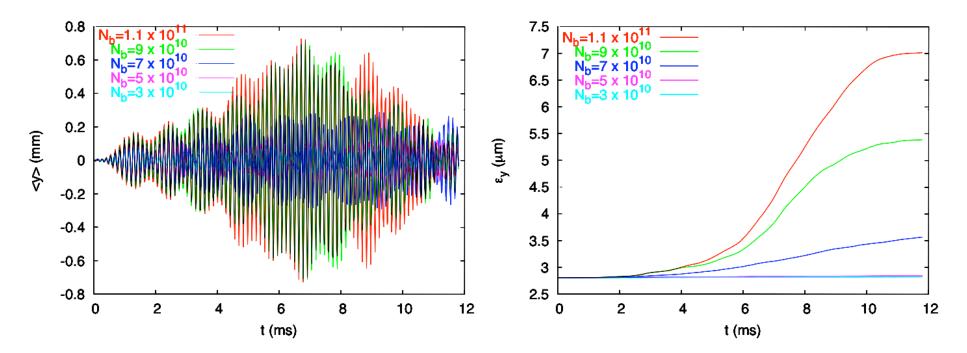

Parameter	Symbol (unit)	Value
Momentum	p_0 (GeV/c)	scanned between 14 and 270
Bunch intensity	$N_b(\times 10^{11})$	scanned between 0.3 and 1.1
Longitudinal emittance (2σ)	ϵ_z (eVs)	0.35
Bunch length $(1 \cdot \sigma)$	σ_z (m)	0.3
Mom. compaction	α	1.92×10^{-3}
Norm. r.m.s. emittances	$\epsilon_{x,y}$ (µm)	2.8/2.8
Tunes	$Q_{x,y}$	26.185/26.13
Chromaticities	$\xi_{x,y}$	corrected, corrected
E-cloud density (average)	$\rho_e (\mathrm{m}^{-3})$	$0.3 - 1 imes 10^{12}$

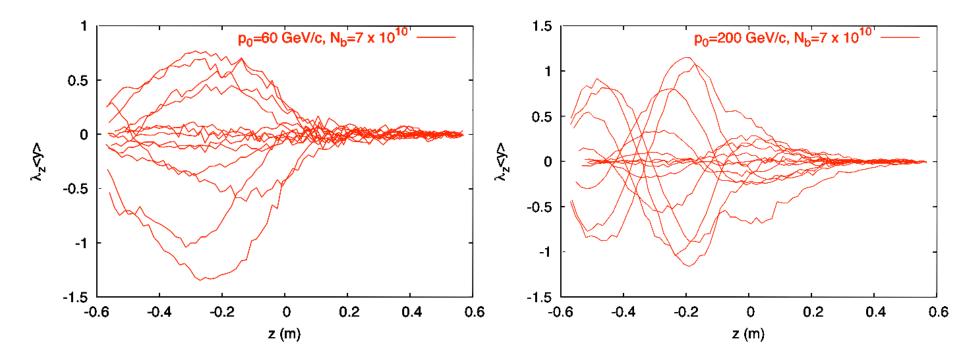
Table 1: SPS parameters used in the simulation

MAIN IMPLICATIONS OF THE ASSUMPTIONS


- Longitudinal emittance 0.35 eVs and rms bunch length 0.3 m:
 - * Matched voltage scales like $|\eta|/\gamma$ and is re-adjusted for the simulations at different energies

• Normalised transverse emittances: $\sim 3.0 \,\mu m$ implies that transverse beam sizes scale like $\gamma^{-1/2}$

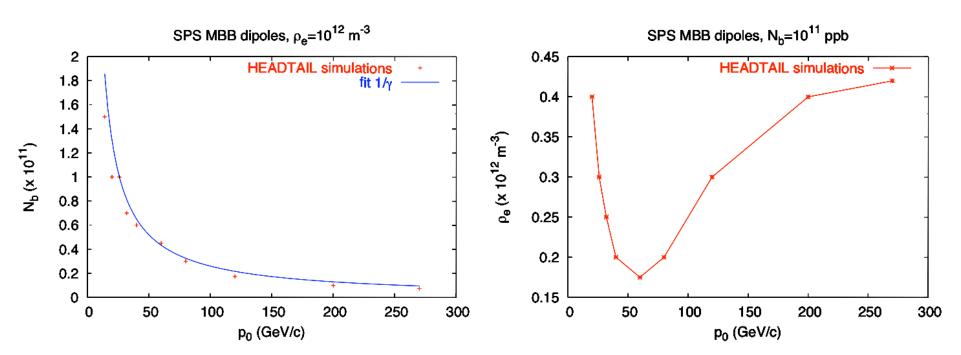
CENTROID AND EMITTANCE EVOLUTION



Example at 40 GeV/c:

- \rightarrow There is a coherent motion of the bunch with threshold between 5 and 7 x 10¹⁰
- \rightarrow simulations are in dipole field regions, the instability appears in the vertical plane.

CENTROID MOTION ALONG THE BUNCH



The coherent motion appears along the bunch with a typical TMCI pattern.

Example \rightarrow The figures above are superimposed snapshots of the centroid motion along the bunch at different times for the 60 and 200 GeV/c cases.

OVERVIEW ON THE INSTABILITY THRESHOLDS

Instability thresholds as:

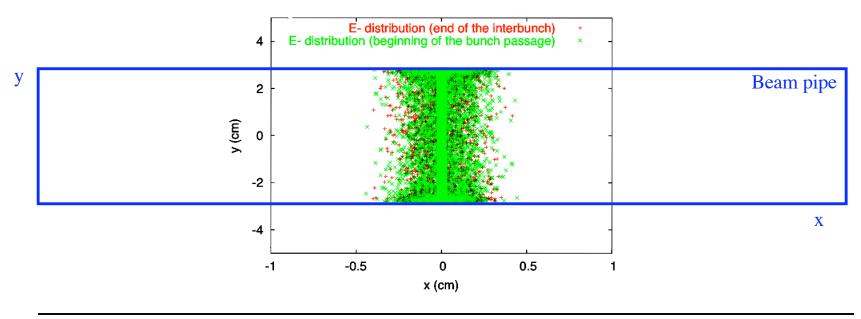
- Bunch intensity when the e-cloud density is fixed \rightarrow decreases with energy!
- E-cloud density when the bunch intensity is fixed \rightarrow it does not change by a large amount

CHANGING ASSUMPTIONS: V=4 MV

Stronger voltage makes the beam more stable:

 \rightarrow At 40 GeV/c 1.1 x 10¹¹ ppb is less unstable than in matched condition and it is completely stabilized by a 0.4 units of vertical chromaticity.

 \rightarrow At 120 GeV/c 1.1 x 10¹¹ ppb is stable even with zero chromaticity.

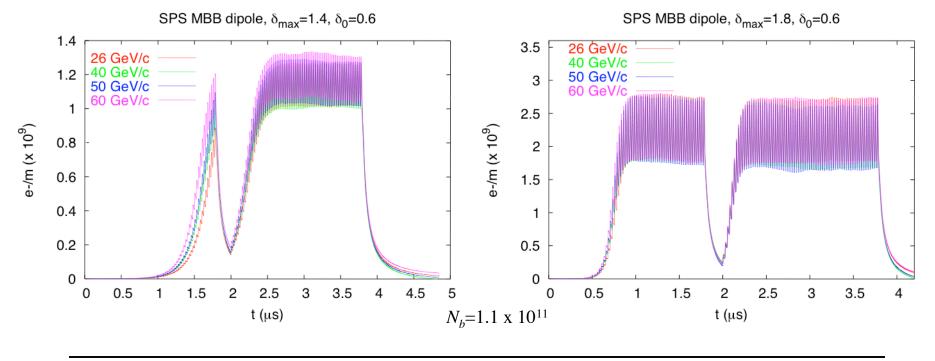


HEADTAIL UPGRADED

The electron distribution used in HEADTAIL has been so far a uniform distribution in the beam pipe or a single- or two-stripe distribution to better fit the real distribution in a dipole field region.

 \rightarrow We could improve the model by using as an input the real distribution of electrons as it comes out of the build up ECLOUD code

 \rightarrow The electron distribution at the very beginning of a bunch passage is saved into a file from an ECLOUD run and subsequently fed into HEADTAIL. This model is more self-consistent!



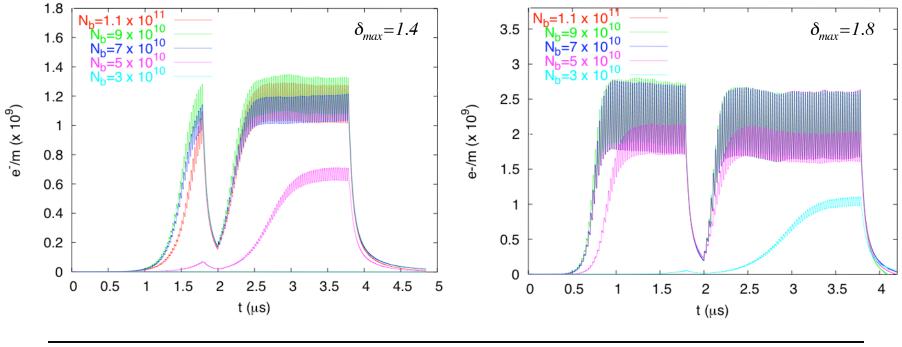
HEADTAIL UPGRADED (II)

 \rightarrow The build up simulations show a very weak dependence of the saturated electron density on the beam energy (i.e. transverse beam sizes).

 \rightarrow Changing δ_{max} from 1.4 to 1.8 the value of saturated density about doubles.

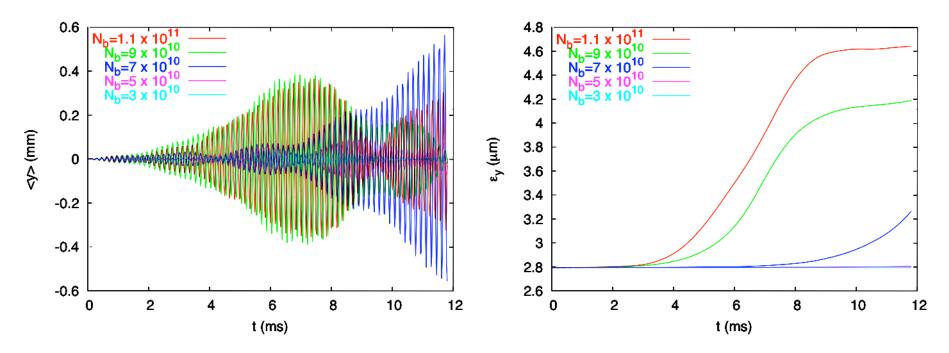
PAF, 14.08.2006

Giovanni Rumolo



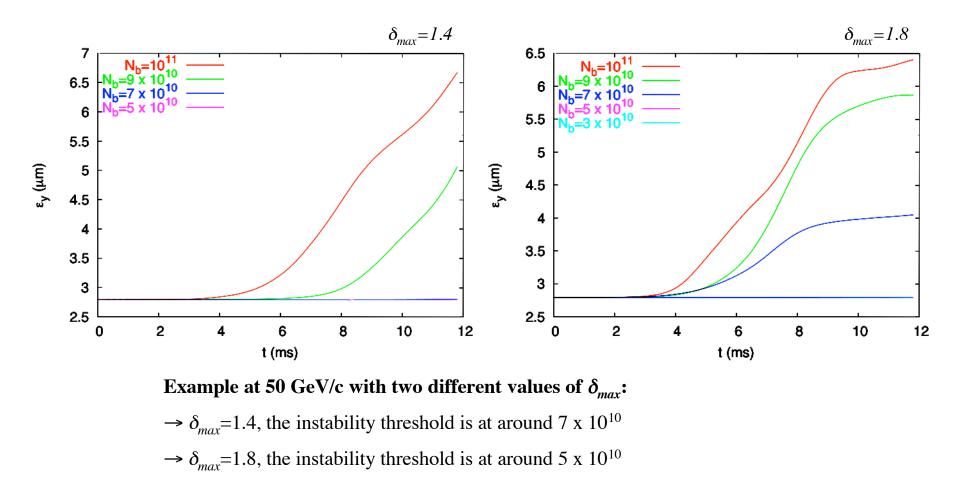
HEADTAIL UPGRADED (III)

 \rightarrow The dependence of the saturated electron density on the beam intensity is plotted for two values of the δ_{max}


 \rightarrow When $\delta_{max} = 1.4$ the threshold for the e-cloud build up is at around 4 x 10¹⁰.

Giovanni Rumolo

HEADTAIL UPGRADED (IV)



Example at 40 GeV/c:

 \rightarrow The instability occurs in a very similar fashion to the case with electrons uniformly distributed inside the beam pipe. The threshold is very close to the one previously computed!!

HEADTAIL UPGRADED (V)

Giovanni Rumolo

SUMMARY & CONCLUSIONS

- The electron cloud instability exhibits a more complex behaviour than regular TMCI:
 - The **bunch intensity threshold** (N_b) for instability **decreases** with energy, most probably due to the shrinking transverse beam sizes
 - Unlike the conventional TMCI threshold, which increases with energy like $|\eta|$, the decay law for the e-cloud instability threshold seems to be $\propto 1/\gamma$.
- The e-cloud density threshold (ρ_{cl}) for instability weakly depends on energy, but anyway is minimum at around 40-60 GeV/c

CONCLUSIONS & RECOMMENDATIONS

- Self-consistent ECLOUD-HEADTAIL simulations have been set up for a more realistic modeling:
 - N_b and ρ_{cl} are not independent variables, but $\rho_{cl} = \rho_{cl}(N_b)$
 - The electron distribution used in HEADTAIL comes from the build up simulation.
- The self-consistent model confirms the results obtained with the uniform cloud model at 40-50 GeV/c
- Based on this study, measures against electron cloud formation are necessary if the injection energy into the SPS is increased.